Optimization modeling of plant root architecture for water and phosphorus acquisition.

نویسندگان

  • Melissa D Ho
  • Bryan C McCannon
  • Jonathan P Lynch
چکیده

An optimization model is presented that examines the relationship between root architecture and multiple resource acquisition, specifically water and phosphorus in spatially heterogeneous environments. The basal root growth angle of an individual common bean plant, which determines the orientation and localization of the bulk of the root system, was modeled as the decision variable. The total payoff to the plant, the benefit obtained from water and phosphorus acquisition, minus the costs of spatial competition between roots, is given as a function of the (x,y) coordinates of the basal root in two-dimensional Cartesian space. We obtained a general solution and applied it to four unique environmental cases which are as follows: (1) the case of uniformly distributed water and phosphorus; (2) the case of localized shallow phosphorus; (3) the case of localized deep water; and (4) the case of shallow phosphorus and deep water. The general solution states that the optimal basal root growth angle will occur at the point where the total rate of change in the value of the resources acquired equals the total rate of change in cost that results from locating the root deeper in the soil. An optimizing plant locates its roots deeper in the soil profile until the marginal benefit exactly equals the marginal cost. The model predicts that the basal root angle of an optimizing plant will be shallower for Case 2 and deeper for Case 3, relative to the basal root angle obtained in the case of uniformly distributed water and phosphorus. The optimal basal root angle for Case 4 will depend on the marginal rate of substitution of water availability for phosphorus availability that occurs with depth. Empirical observations of bean root architecture in the greenhouse and in the field confirm model results and are discussed. In addition, the potential importance of phenotypic plasticity and phenotypic variation are discussed in relation to optimization of traits and adaptation to spatially heterogeneous environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phosphorus Efficiency in Crops with Focus on Purple Acid Phosphatase: Potentials and Perspective

Low-phosphorus (P) stress as a key factor limiting plant growth and production is common in most agricultural soils. Most of the soil-applied phosphate will be rapidly immobilized and most of annually applied phosphate fertilizers are fixed in the soil in organic forms by adsorption, sedimentation and transformation. However, excess P application may lead to contamination of water sources by en...

متن کامل

Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for ...

متن کامل

OpenSimRoot: widening the scope and application of root architectural models

OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a p...

متن کامل

Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches

This study aims to examine the ability of free floating aquatic plants to remove phosphorus and to predict the reduction of phosphorus from rice mill wastewater using soft computing techniques. A mesocosm study was conducted at the mill premises under normal conditions, and reliable results were obtained. Four aquatic plants, namely water hyacinth, water lettuce, salvinia, and duckweed were use...

متن کامل

Responses of root architecture development to low phosphorus availability: a review

BACKGROUND Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 226 3  شماره 

صفحات  -

تاریخ انتشار 2004